Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
J Infect Dis ; 2022 Aug 17.
Article in English | MEDLINE | ID: covidwho-2241629

ABSTRACT

BACKGROUND: SARS-CoV-2 infection may be associated with worse clinical outcomes in people with HIV (PWH). We report anti-SARS-CoV-2 antibody responses in COVID-19 hospitalized patients in Durban, South Africa during the second SARS-CoV-2 infection wave dominated by the Beta (B.1.351) variant. METHODS: Thirty-four participants with confirmed SARS-CoV-2 infection were followed up with weekly blood sampling to examine antibody levels and neutralization potency against SARS-CoV-2 variants. Participants included 18 PWH, of whom 11 were HIV viremic. RESULTS: SARS-CoV-2 specific antibody concentrations were generally lower in viremic PWH relative to virologically suppressed PWH and HIV-negative participants and neutralization of the Beta variant was 4.9-fold lower in viremic PWH. Most HIV-negative participants and ART-suppressed PWH also neutralized the Delta (B.1.617.2) variant, whereas the majority of viremic PWH did not. CD4 counts <500 cells/µL were associated with lower frequencies of IgG and IgA seroconversion. In addition, there was a high correlation between a surrogate virus neutralization test and live virus neutralization against ancestral SARS-CoV-2 virus in both PWH and HIV-negative individuals, but correlation decreased for the Beta variant neutralization in PWH. CONCLUSIONS: HIV viremia was associated with reduced Beta variant neutralization. This highlights the importance of HIV suppression in maintaining an effective SARS-CoV-2 neutralization response.

2.
Elife ; 112022 10 27.
Article in English | MEDLINE | ID: covidwho-2164143

ABSTRACT

Background: HIV infection dysregulates the B cell compartment, affecting memory B cell formation and the antibody response to infection and vaccination. Understanding the B cell response to SARS-CoV-2 in people living with HIV (PLWH) may explain the increased morbidity, reduced vaccine efficacy, reduced clearance, and intra-host evolution of SARS-CoV-2 observed in some HIV-1 coinfections. Methods: We compared B cell responses to COVID-19 in PLWH and HIV negative (HIV-ve) patients in a cohort recruited in Durban, South Africa, during the first pandemic wave in July 2020 using detailed flow cytometry phenotyping of longitudinal samples with markers of B cell maturation, homing, and regulatory features. Results: This revealed a coordinated B cell response to COVID-19 that differed significantly between HIV-ve and PLWH. Memory B cells in PLWH displayed evidence of reduced germinal centre (GC) activity, homing capacity, and class-switching responses, with increased PD-L1 expression, and decreased Tfh frequency. This was mirrored by increased extrafollicular (EF) activity, with dynamic changes in activated double negative (DN2) and activated naïve B cells, which correlated with anti-RBD-titres in these individuals. An elevated SARS-CoV-2-specific EF response in PLWH was confirmed using viral spike and RBD bait proteins. Conclusions: Despite similar disease severity, these trends were highest in participants with uncontrolled HIV, implicating HIV in driving these changes. EF B cell responses are rapid but give rise to lower affinity antibodies, less durable long-term memory, and reduced capacity to adapt to new variants. Further work is needed to determine the long-term effects of HIV on SARS-CoV-2 immunity, particularly as new variants emerge. Funding: This work was supported by a grant from the Wellcome Trust to the Africa Health Research Institute (Wellcome Trust Strategic Core Award [grant number 201433/Z/16/Z]). Additional funding was received from the South African Department of Science and Innovation through the National Research Foundation (South African Research Chairs Initiative [grant number 64809]), and the Victor Daitz Foundation.


Subject(s)
COVID-19 , HIV Infections , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , South Africa , Antibodies, Viral
4.
Clin Infect Dis ; 75(1): e857-e864, 2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-2017793

ABSTRACT

BACKGROUND: People living with HIV (PLWH) have been reported to have a higher risk of more severe COVID-19 disease and death. We assessed the ability of the Ad26.CoV2.S vaccine to elicit neutralizing activity against the Delta variant in PLWH relative to HIV-negative individuals. We also examined effects of HIV status and suppression on Delta neutralization response in SARS-CoV-2-infected unvaccinated participants. METHODS: We enrolled participants who were vaccinated through the SISONKE South African clinical trial of the Ad26.CoV2.S vaccine in healthcare workers (HCWs). PLWH in this group had well-controlled HIV infection. We also enrolled unvaccinated participants previously infected with SARS-CoV-2. Neutralization capacity was assessed by a live virus neutralization assay of the Delta variant. RESULTS: Most Ad26.CoV2.S vaccinated HCWs were previously infected with SARS-CoV-2. In this group, Delta variant neutralization was 9-fold higher compared with the infected-only group and 26-fold higher relative to the vaccinated-only group. No decrease in Delta variant neutralization was observed in PLWH relative to HIV-negative participants. In contrast, SARS-CoV-2-infected, unvaccinated PLWH showed 7-fold lower neutralization and a higher frequency of nonresponders, with the highest frequency of nonresponders in people with HIV viremia. Vaccinated-only participants showed low neutralization capacity. CONCLUSIONS: The neutralization response of the Delta variant following Ad26.CoV2.S vaccination in PLWH with well-controlled HIV was not inferior to HIV-negative participants, irrespective of past SARS-CoV-2 infection. In SARS-CoV-2-infected and nonvaccinated participants, HIV infection reduced the neutralization response to SARS-CoV-2, with the strongest reduction in HIV viremic individuals.


Subject(s)
Ad26COVS1 , COVID-19 , HIV Infections , Ad26COVS1/administration & dosage , Ad26COVS1/adverse effects , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , HIV , HIV Infections/complications , Humans , SARS-CoV-2 , Vaccination
5.
Nat Commun ; 13(1): 4686, 2022 08 10.
Article in English | MEDLINE | ID: covidwho-1984389

ABSTRACT

SARS-CoV-2 Omicron (B.1.1.529) BA.4 and BA.5 sub-lineages, first detected in South Africa, have changes relative to Omicron BA.1 including substitutions in the spike receptor binding domain. Here we isolated live BA.4 and BA.5 viruses and measured BA.4/BA.5 neutralization elicited by BA.1 infection either in the absence or presence of previous vaccination as well as from vaccination without BA.1 infection. In BA.1-infected unvaccinated individuals, neutralization relative to BA.1 declines 7.6-fold for BA.4 and 7.5-fold for BA.5. In vaccinated individuals with subsequent BA.1 infection, neutralization relative to BA.1 decreases 3.2-fold for BA.4 and 2.6-fold for BA.5. The fold-drop versus ancestral virus neutralization in this group is 4.0-fold for BA.1, 12.9-fold for BA.4, and 10.3-fold for BA.5. In contrast, BA.4/BA.5 escape is similar to BA.1 in the absence of BA.1 elicited immunity: fold-drop relative to ancestral virus neutralization is 19.8-fold for BA.1, 19.6-fold for BA.4, and 20.9-fold for BA.5. These results show considerable escape of BA.4/BA.5 from BA.1 elicited immunity which is moderated with vaccination and may indicate that BA.4/BA.5 may have the strongest selective advantage in evading neutralization relative to BA.1 in unvaccinated, BA.1 infected individuals.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , Neutralization Tests , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
6.
Elife ; 112022 07 26.
Article in English | MEDLINE | ID: covidwho-1964557

ABSTRACT

In some instances, unsuppressed HIV has been associated with severe COVID-19 disease, but the mechanisms underpinning this susceptibility are still unclear. Here, we assessed the impact of HIV infection on the quality and epitope specificity of SARS-CoV-2 T cell responses in the first wave and second wave of the COVID-19 epidemic in South Africa. Flow cytometry was used to measure T cell responses following peripheral blood mononuclear cell stimulation with SARS-CoV-2 peptide pools. Culture expansion was used to determine T cell immunodominance hierarchies and to assess potential SARS-CoV-2 escape from T cell recognition. HIV-seronegative individuals had significantly greater CD4+ T cell responses against the Spike protein compared to the viremic people living with HIV (PLWH). Absolute CD4 count correlated positively with SARS-CoV-2-specific CD4+ and CD8+ T cell responses (CD4 r=0.5, p=0.03; CD8 r=0.5, p=0.001), whereas T cell activation was negatively correlated with CD4+ T cell responses (CD4 r=-0.7, p=0.04). There was diminished T cell cross-recognition between the two waves, which was more pronounced in individuals with unsuppressed HIV infection. Importantly, we identify four mutations in the Beta variant that resulted in abrogation of T cell recognition. Taken together, we show that unsuppressed HIV infection markedly impairs T cell responses to SARS-Cov-2 infection and diminishes T cell cross-recognition. These findings may partly explain the increased susceptibility of PLWH to severe COVID-19 and also highlights their vulnerability to emerging SARS-CoV-2 variants of concern.


Subject(s)
COVID-19 , HIV Infections , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , HIV Infections/complications , Humans , Leukocytes, Mononuclear , SARS-CoV-2
7.
Eur Respir Rev ; 31(164)2022 Jun 30.
Article in English | MEDLINE | ID: covidwho-1892170

ABSTRACT

Tuberculosis (TB) remains a leading infectious cause of death worldwide and the coronavirus disease 2019 pandemic has negatively impacted the global TB burden of disease indicators. If the targets of TB mortality and incidence reduction set by the international community are to be met, new more effective adult and adolescent TB vaccines are urgently needed. There are several new vaccine candidates at different stages of clinical development. Given the limited funding for vaccine development, it is crucial that trial designs are as efficient as possible. Prevention of infection (POI) approaches offer an attractive opportunity to accelerate new candidate vaccines to advance into large and expensive prevention of disease (POD) efficacy trials. However, POI approaches are limited by imperfect current tools to measure Mycobacterium tuberculosis infection end-points. POD trials need to carefully consider the type and number of microbiological tests that define TB disease and, if efficacy against subclinical (asymptomatic) TB disease is to be tested, POD trials need to explore how best to define and measure this form of TB. Prevention of recurrence trials are an alternative approach to generate proof of concept for efficacy, but optimal timing of vaccination relative to treatment must still be explored. Novel and efficient approaches to efficacy trial design, in addition to an increasing number of candidates entering phase 2-3 trials, would accelerate the long-standing quest for a new TB vaccine.


Subject(s)
Clinical Trials as Topic , Tuberculosis Vaccines , Vaccine Development , Adolescent , Adult , COVID-19/prevention & control , Clinical Trials as Topic/methods , Humans , Mycobacterium tuberculosis , Research Design , Tuberculosis/prevention & control
8.
Front Immunol ; 13: 856906, 2022.
Article in English | MEDLINE | ID: covidwho-1834405

ABSTRACT

Tuberculosis (TB) is among the leading causes of death worldwide from a single infectious agent, second only to COVID-19 in 2020. TB is caused by infection with Mycobacterium tuberculosis (Mtb), that results either in a latent or active form of disease, the latter associated with Mtb spread. In the absence of an effective vaccine, epidemiologic modeling suggests that aggressive treatment of individuals with active TB (ATB) may curb spread. Yet, clinical discrimination between latent (LTB) and ATB remains a challenge. While antibodies are widely used to diagnose many infections, the utility of antibody-based tests to diagnose ATB has only regained significant traction recently. Specifically, recent interest in the humoral immune response to TB has pointed to potential differences in both targeted antigens and antibody features that can discriminate latent and active TB. Here we aimed to integrate these observations and broadly profile the humoral immune response across individuals with LTB or ATB, with and without HIV co-infection, to define the most discriminatory humoral properties and diagnose TB disease more easily. Using 209 Mtb antigens, striking differences in antigen-recognition were observed across latently and actively infected individuals that was modulated by HIV serostatus. However, ATB and LTB could be discriminated, irrespective of HIV-status, based on a combination of both antibody levels and Fc receptor-binding characteristics targeting both well characterized (like lipoarabinomannan, 38 kDa or antigen 85) but also novel Mtb antigens (including Rv1792, Rv1528, Rv2435C or Rv1508). These data reveal new Mtb-specific immunologic markers that can improve the classification of ATB versus LTB.


Subject(s)
COVID-19 , HIV Infections , Latent Tuberculosis , Tuberculosis , Antibodies , HIV Infections/complications , Humans
9.
Nature ; 607(7918): 356-359, 2022 07.
Article in English | MEDLINE | ID: covidwho-1830078

ABSTRACT

The extent to which Omicron infection1-9, with or without previous vaccination, elicits protection against the previously dominant Delta (B.1.617.2) variant is unclear. Here we measured the neutralization capacity against variants of severe acute respiratory syndrome coronavirus 2 in 39 individuals in South Africa infected with the Omicron sublineage BA.1 starting at a median of 6 (interquartile range 3-9) days post symptom onset and continuing until last follow-up sample available, a median of 23 (interquartile range 19-27) days post symptoms to allow BA.1-elicited neutralizing immunity time to develop. Fifteen participants were vaccinated with Pfizer's BNT162b2 or Johnson & Johnson's Ad26.CoV2.S and had BA.1 breakthrough infections, and 24 were unvaccinated. BA.1 neutralization increased from a geometric mean 50% focus reduction neutralization test titre of 42 at enrolment to 575 at the last follow-up time point (13.6-fold) in vaccinated participants and from 46 to 272 (6.0-fold) in unvaccinated participants. Delta virus neutralization also increased, from 192 to 1,091 (5.7-fold) in vaccinated participants and from 28 to 91 (3.0-fold) in unvaccinated participants. At the last time point, unvaccinated individuals infected with BA.1 had low absolute levels of neutralization for the non-BA.1 viruses and 2.2-fold lower BA.1 neutralization, 12.0-fold lower Delta neutralization, 9.6-fold lower Beta variant neutralization, 17.9-fold lower ancestral virus neutralization and 4.8-fold lower Omicron sublineage BA.2 neutralization relative to vaccinated individuals infected with BA.1. These results indicate that hybrid immunity formed by vaccination and Omicron BA.1 infection should be protective against Delta and other variants. By contrast, infection with Omicron BA.1 alone offers limited cross-protection despite moderate enhancement.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Cross Protection , SARS-CoV-2 , Vaccination , Ad26COVS1/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/immunology , Cross Protection/immunology , Humans , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Vaccination/statistics & numerical data
10.
Cell Host Microbe ; 30(2): 154-162.e5, 2022 02 09.
Article in English | MEDLINE | ID: covidwho-1708092

ABSTRACT

Characterizing SARS-CoV-2 evolution in specific geographies may help predict properties of the variants that come from these regions. We mapped neutralization of a SARS-CoV-2 strain that evolved over 6 months from ancestral virus in a person with advanced HIV disease in South Africa; this person was infected prior to emergence of the Beta and Delta variants. We longitudinally tracked the evolved virus and tested it against self-plasma and convalescent plasma from ancestral, Beta, and Delta infections. Early virus was similar to ancestral, but it evolved a multitude of mutations found in Omicron and other variants. It showed substantial but incomplete Pfizer BNT162b2 escape, weak neutralization by self-plasma, and despite pre-dating Delta, it also showed extensive escape of Delta infection-elicited neutralization. This example is consistent with the notion that SARS-CoV-2 evolving in individual immune-compromised hosts, including those with advanced HIV disease, may gain immune escape of vaccines and enhanced escape of Delta immunity, and this has implications for vaccine breakthrough and reinfections.


Subject(s)
Antibodies, Neutralizing/blood , BNT162 Vaccine/immunology , HIV Infections/pathology , Immune Evasion/immunology , Immunogenicity, Vaccine/immunology , SARS-CoV-2/immunology , Adult , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19 Vaccines/immunology , Cell Line , Chlorocebus aethiops , Female , HIV-1/immunology , Humans , Immunocompromised Host/immunology , Neutralization Tests , SARS-CoV-2/isolation & purification , South Africa , Vaccination , Vaccine Efficacy , Vero Cells
11.
Nature ; 602(7898): 654-656, 2022 02.
Article in English | MEDLINE | ID: covidwho-1616992

ABSTRACT

The emergence of the SARS-CoV-2 variant of concern Omicron (Pango lineage B.1.1.529), first identified in Botswana and South Africa, may compromise vaccine effectiveness and lead to re-infections1. Here we investigated Omicron escape from neutralization by antibodies from South African individuals vaccinated with Pfizer BNT162b2. We used blood samples taken soon after vaccination from individuals who were vaccinated and previously infected with SARS-CoV-2 or vaccinated with no evidence of previous infection. We isolated and sequence-confirmed live Omicron virus from an infected person and observed that Omicron requires the angiotensin-converting enzyme 2 (ACE2) receptor to infect cells. We compared plasma neutralization of Omicron relative to an ancestral SARS-CoV-2 strain and found that neutralization of ancestral virus was much higher in infected and vaccinated individuals compared with the vaccinated-only participants. However, both groups showed a 22-fold reduction in vaccine-elicited neutralization by the Omicron variant. Participants who were vaccinated and had previously been infected exhibited residual neutralization of Omicron similar to the level of neutralization of the ancestral virus observed in the vaccination-only group. These data support the notion that reasonable protection against Omicron may be maintained using vaccination approaches.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , Immune Evasion/immunology , Neutralization Tests , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Cell Line , Chlorocebus aethiops , Humans , Mutation , SARS-CoV-2/classification , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
12.
Elife ; 102021 10 05.
Article in English | MEDLINE | ID: covidwho-1450948

ABSTRACT

There are conflicting reports on the effects of HIV on COVID-19. Here, we analyzed disease severity and immune cell changes during and after SARS-CoV-2 infection in 236 participants from South Africa, of which 39% were people living with HIV (PLWH), during the first and second (Beta dominated) infection waves. The second wave had more PLWH requiring supplemental oxygen relative to HIV-negative participants. Higher disease severity was associated with low CD4 T cell counts and higher neutrophil to lymphocyte ratios (NLR). Yet, CD4 counts recovered and NLR stabilized after SARS-CoV-2 clearance in wave 2 infected PLWH, arguing for an interaction between SARS-CoV-2 and HIV infection leading to low CD4 and high NLR. The first infection wave, where severity in HIV negative and PLWH was similar, still showed some HIV modulation of SARS-CoV-2 immune responses. Therefore, HIV infection can synergize with the SARS-CoV-2 variant to change COVID-19 outcomes.


Subject(s)
COVID-19/complications , COVID-19/immunology , HIV Infections/complications , HIV Infections/immunology , Immunity, Cellular , Severity of Illness Index , Adult , Aged , CD4 Lymphocyte Count , Female , Humans , Male , Middle Aged , SARS-CoV-2 , South Africa
13.
Lancet Glob Health ; 9(7): e967-e976, 2021 07.
Article in English | MEDLINE | ID: covidwho-1271838

ABSTRACT

BACKGROUND: There has been remarkable progress in the treatment of HIV throughout sub-Saharan Africa, but there are few data on the prevalence and overlap of other significant causes of disease in HIV endemic populations. Our aim was to identify the prevalence and overlap of infectious and non-communicable diseases in such a population in rural South Africa. METHODS: We did a cross-sectional study of eligible adolescents and adults from the Africa Health Research Institute demographic surveillance area in the uMkhanyakude district of KwaZulu-Natal, South Africa. The participants, who were 15 years or older, were invited to participate at a mobile health camp. Medical history for HIV, tuberculosis, hypertension, and diabetes was established through a questionnaire. Blood pressure measurements, chest x-rays, and tests of blood and sputum were taken to estimate the population prevalence and geospatial distribution of HIV, active and lifetime tuberculosis, elevated blood glucose, elevated blood pressure, and combinations of these. FINDINGS: 17 118 adolescents and adults were recruited from May 25, 2018, to Nov 28, 2019, and assessed. Overall, 52·1% (95% CI 51·3-52·9) had at least one active disease. 34·2% (33·5-34·9) had HIV, 1·4% (1·2-1·6) had active tuberculosis, 21·8% (21·2-22·4) had lifetime tuberculosis, 8·5% (8·1-8·9) had elevated blood glucose, and 23·0% (22·4-23·6) had elevated blood pressure. Appropriate treatment and optimal disease control was highest for HIV (78·1%), and lower for elevated blood pressure (42·5%), active tuberculosis (29·6%), and elevated blood glucose (7·1%). Disease prevalence differed notably by sex, across age groups, and geospatially: men had a higher prevalence of active and lifetime tuberculosis, whereas women had a substantially high prevalence of HIV at 30-49 years and an increasing prevalence of multiple and poorly controlled non-communicable diseases when older than 50 years. INTERPRETATION: We found a convergence of infectious and non-communicable disease epidemics in a rural South African population, with HIV well treated relative to all other diseases, but tuberculosis, elevated blood glucose, and elevated blood pressure poorly diagnosed and treated. A public health response that expands the successes of the HIV testing and treatment programme to provide multidisease care targeted to specific populations is required to optimise health in such settings in sub-Saharan Africa. FUNDING: Wellcome Trust, Bill & Melinda Gates Foundation, the South African Department of Science and Innovation, South African Medical Research Council, and South African Population Research Infrastructure Network. TRANSLATION: For the isiZulu translation of the abstract see Supplementary Materials section.


Subject(s)
Diabetes Mellitus/epidemiology , Epidemics , HIV Infections/epidemiology , Hypertension/epidemiology , Rural Health/statistics & numerical data , Tuberculosis/epidemiology , Adolescent , Adult , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Multimorbidity , Prevalence , South Africa/epidemiology
14.
Nature ; 593(7857): 142-146, 2021 05.
Article in English | MEDLINE | ID: covidwho-1155700

ABSTRACT

SARS-CoV-2 variants of concern (VOC) have arisen independently at multiple locations1,2 and may reduce the efficacy of current vaccines that target the spike glycoprotein of SARS-CoV-23. Here, using a live-virus neutralization assay, we compared the neutralization of a non-VOC variant with the 501Y.V2 VOC (also known as B.1.351) using plasma collected from adults who were hospitalized with COVID-19 during the two waves of infection in South Africa, the second wave of which was dominated by infections with the 501Y.V2 variant. Sequencing demonstrated that infections of plasma donors from the first wave were with viruses that did not contain the mutations associated with 501Y.V2, except for one infection that contained the E484K substitution in the receptor-binding domain. The 501Y.V2 virus variant was effectively neutralized by plasma from individuals who were infected during the second wave. The first-wave virus variant was effectively neutralized by plasma from first-wave infections. However, the 501Y.V2 variant was poorly cross-neutralized by plasma from individuals with first-wave infections; the efficacy was reduced by 15.1-fold relative to neutralization of 501Y.V2 by plasma from individuals infected in the second wave. By contrast, cross-neutralization of first-wave virus variants using plasma from individuals with second-wave infections was more effective, showing only a 2.3-fold decrease relative to neutralization of first-wave virus variants by plasma from individuals infected in the first wave. Although we tested only one plasma sample from an individual infected with a SARS-CoV-2 variant with only the E484K substitution, this plasma sample potently neutralized both variants. The observed effective neutralization of first-wave virus by plasma from individuals infected with 501Y.V2 provides preliminary evidence that vaccines based on VOC sequences could retain activity against other circulating SARS-CoV-2 lineages.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/therapy , COVID-19/virology , Immune Evasion/immunology , Mutation , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , COVID-19/epidemiology , Cell Line , Chlorocebus aethiops , Humans , Immune Evasion/genetics , Immunization, Passive , Neutralization Tests , SARS-CoV-2/genetics , South Africa/epidemiology , Time Factors , Vero Cells , COVID-19 Serotherapy
15.
Wellcome Open Res ; 5: 109, 2020.
Article in English | MEDLINE | ID: covidwho-1027389

ABSTRACT

A coordinated system of disease surveillance will be critical to effectively control the coronavirus disease 2019 (Covid-19) pandemic. Such systems enable rapid detection and mapping of epidemics and inform allocation of scarce prevention and intervention resources. Although many lower- and middle-income settings lack infrastructure for optimal disease surveillance, health and demographic surveillance systems (HDSS) provide a unique opportunity for epidemic monitoring. This protocol describes a surveillance program at the Africa Health Research Institute's Population Intervention Platform site in northern KwaZulu-Natal. The program leverages a longstanding HDSS in a rural, resource-limited setting with very high prevalence of HIV and tuberculosis to perform Covid-19 surveillance. Our primary aims include: describing the epidemiology of the Covid-19 epidemic in rural KwaZulu-Natal; determining the impact of the Covid-19 outbreak and non-pharmaceutical control interventions (NPI) on behaviour and wellbeing; determining the impact of HIV and tuberculosis on Covid-19 susceptibility; and using collected data to support the local public-sector health response. The program involves telephone-based interviews with over 20,000 households every four months, plus a sub-study calling 750 households every two weeks. Each call asks a household representative how the epidemic and NPI are affecting the household and conducts a Covid-19 risk screen for all resident members. Any individuals screening positive are invited to a clinical screen, potential test and referral to necessary care - conducted in-person near their home following careful risk minimization procedures. In this protocol we report the details of our cohort design, questionnaires, data and reporting structures, and standard operating procedures in hopes that our project can inform similar efforts elsewhere.

16.
BMJ Open ; 10(10): e043763, 2020 10 05.
Article in English | MEDLINE | ID: covidwho-835490

ABSTRACT

OBJECTIVES: We evaluated whether implementation of lockdown orders in South Africa affected ambulatory clinic visitation in rural Kwa-Zulu Natal (KZN). DESIGN: Observational cohort SETTING: Data were analysed from 11 primary healthcare clinics in northern KZN. PARTICIPANTS: A total of 46 523 individuals made 89 476 clinic visits during the observation period. EXPOSURE OF INTEREST: We conducted an interrupted time series analysis to estimate changes in clinic visitation with a focus on transitions from the prelockdown to the level 5, 4 and 3 lockdown periods. OUTCOME MEASURES: Daily clinic visitation at ambulatory clinics. In stratified analyses, we assessed visitation for the following subcategories: child health, perinatal care and family planning, HIV services, non-communicable diseases and by age and sex strata. RESULTS: We found no change in total clinic visits/clinic/day at the time of implementation of the level 5 lockdown (change from 90.3 to 84.6 mean visits/clinic/day, 95% CI -16.5 to 3.1), or at the transitions to less stringent level 4 and 3 lockdown levels. We did detect a >50% reduction in child healthcare visits at the start of the level 5 lockdown from 11.9 to 4.7 visits/day (-7.1 visits/clinic/day, 95% CI -8.9 to 5.3), both for children aged <1 year and 1-5 years, with a gradual return to prelockdown within 3 months after the first lockdown measure. In contrast, we found no drop in clinic visitation in adults at the start of the level 5 lockdown, or related to HIV care (from 37.5 to 45.6, 8.0 visits/clinic/day, 95% CI 2.1 to 13.8). CONCLUSIONS: In rural KZN, we identified a significant, although temporary, reduction in child healthcare visitation but general resilience of adult ambulatory care provision during the first 4 months of the lockdown. Future work should explore the impacts of the circulating epidemic on primary care provision and long-term impacts of reduced child visitation on outcomes in the region.


Subject(s)
Ambulatory Care/statistics & numerical data , Coronavirus Infections/epidemiology , Health Services Accessibility/statistics & numerical data , Health Services Accessibility/trends , Pneumonia, Viral/epidemiology , Primary Health Care , Public Health , Adult , Age Factors , Betacoronavirus , COVID-19 , Family Planning Services/statistics & numerical data , Female , HIV Infections/epidemiology , Humans , Male , Pandemics , Pediatrics/statistics & numerical data , Primary Health Care/methods , Primary Health Care/statistics & numerical data , Public Health/methods , Public Health/statistics & numerical data , Rural Population , SARS-CoV-2
17.
Wellcome Open Res ; 5:109-109, 2020.
Article in English | MEDLINE | ID: covidwho-721642

ABSTRACT

A coordinated system of disease surveillance will be critical to effectively control the coronavirus disease 2019 (Covid-19) pandemic. Such systems enable rapid detection and mapping of epidemics and inform allocation of scarce prevention and intervention resources. Although many lower- and middle-income settings lack infrastructure for optimal disease surveillance, health and demographic surveillance systems (HDSS) provide a unique opportunity for epidemic monitoring. This protocol describes a surveillance program at the Africa Health Research Institute's Population Intervention Platform site in northern KwaZulu-Natal. The program leverages a longstanding HDSS in a rural, resource-limited setting with very high prevalence of HIV and tuberculosis to perform Covid-19 surveillance. Our primary aims include: describing the epidemiology of the Covid-19 epidemic in rural KwaZulu-Natal;determining the impact of the Covid-19 outbreak and non-pharmaceutical control interventions (NPI) on behaviour and wellbeing;determining the impact of HIV and tuberculosis on Covid-19 susceptibility;and using collected data to support the local public-sector health response. The program involves telephone-based interviews with over 20,000 households every four months, plus a sub-study calling 750 households every two weeks. Each call asks a household representative how the epidemic and NPI are affecting the household and conducts a Covid-19 risk screen for all resident members. Any individuals screening positive are invited to a clinical screen, potential test and referral to necessary care - conducted in-person near their home following careful risk minimization procedures. In this protocol we report the details of our cohort design, questionnaires, data and reporting structures, and standard operating procedures in hopes that our project can inform similar efforts elsewhere.

SELECTION OF CITATIONS
SEARCH DETAIL